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ABSTRACT

-We-characterzethose constitutive laws in linear viscoelasticity which

are compatible with certain phenoenological conditions.
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SIGNIFICANCE AND EXPLANATION

The constitutive law of a linearly viscoelastic fluid has the- form

t-m f a(t-s)g(t,m))s

where. C i' the stress, Is the linearized relative strain, and the

kernel a is the memory function. -This kernel a may in general be a

distribution. it is assumed that the following phenomenological conditions

holds

1. The fluid resists deformation positive strains yield positive stresses. -.

-2 .- The strain resulting from a more recent instant of time has a greater

influence than that from a more remote time.

It is shown that the only kernels a consistent with these conditions consist

of a) a positive, monotone decreasing function defined on (O,) and 8) a

Ae-distribution located at 0. The latter form of the kernel a corresponds

to a Newtonian fluid.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MC, and not with the author of this report.



ON THE DOMAIN SPACE FOR CONSTITUTIVE

LAWS IN LINEAR VISCOELASTICITY

Michael Renardy

1. Introduction

The most general constitutive law for an isotropic, incompressible

linearly viscoelastic fluid has the form

t
(1.1) r(t) - f a(t-s)J(ts)ds,

-m

where T denotes the extra stress tensor, and J denotes the linearized

relative strain tensor.

A recent paper by Saut and Joseph (41 addresses the question of

specifying suitable domain spaces for the history of j. The class of

"admissible" kernels a is then given by the dual of the domain space.

Depending on the choice of domain space, the kernels may be functions or, more

generally, distributions. Saut and Joseph (4) discuss various choices for the

domain and characterize the resulting dual spaces.

In this paper, a different point of view is adopted. Rather than

specifying a domain space at the outset, I shall investigate the implication

of certain phenomenological restrictions, which are commonly accepted in

rheology. It will turn out that these restrictions alone guarantee a certain

regularity of the kernel a, thus implying that the constitutive law is

defined on a certain minimal domain space.

Sponsored by the U. S. Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. CS-7927062, mod. 2.



We adopt the following two conditions, which are easily motivated by

physical intuition (to my knowledge, they were first formulated by Boltzmann

[1]):

1. The fluid resists deformation positive strains lead to positive

stresses.

2. The strain resulting from a more recent instant of time always has a

greater influence than that resulting from a more distant time.

If a were a smooth function, these conditions would be written as

a 0 0, a' ( 0. We adopt a generalized form of this, which is made precise

below.

We shall find that the only admissible non-function contribution to the

kernel is that which corresponds to the Newtonian fluid. In particular,

fluids of higher grade are excluded (they do not satisfy condition 1).

In chapter 3 I investigate the stability of fluids of higher grade.

Expanding an argument of Joseph (31, I find that no fluid of grade higher than

four can have a stable rest state. Moreover, if the domain occupied by the

fluid is infinite, the initial value problem for such fluids is ill-posed.

Therefore, even for smooth initial histories, such fluids cannot be used to

approximate unsteady flows.

-2-



2. Characterization of Admissible Kernels

A priori it will only be assumed that the constitutive law is defined on

the following space of test functions:

z - {% e c 0, -), supp i is compact, P(0) - 0).

Thus the mapping V + 7 a(sM (s)ds is a continuous linear functional on B.0

The conditions 1 and 2 above are reformulated in the following distributional

forms

1 . a(s)(s)ds ) 0 for i e z such that 0 o 0.
0

2 , J a(s)#(s)ds , 0 for o e z such that ) 0.
0 supp P C (0, -) compact.

These conditions alone guarantee that the kernel a can actually be defined

on a much larger domain space than Z.

Theorems

if 1*, 2 hold, then a can be extended to a linear functional defined

on the space

P {#P e L (0,-), '(0) = 0 and #P is differentiable at 0).

This extension is continuous in the sense that for any a 0 there is a

constant C(s) such that

I MO a ( ) d(.ol Cc(a) ( Ip(s)Ids + sup I l + i'p'())
o 0 961O10)



(If 0 e F, then the right hand side of this inequality is finite for a

small enough).

Proof:

Let us first consider how the kernel a acts on test functions V

supported on an interval [e, 1, a) 0. For any such interval there is a

function * 0 e z such that *' G 0 and *' 0 I on the interval 1(,0.

We thus have

-ao(.)• max 10(t)I C1 4(s) 4 (a) • max '(t) .

te(,01 te eia, 0

From condition I, it follows that

*

If a(a) (s) dI C max I(t)I o f a) (s)ds,
0 te a,0 0

whenever supp o is contained in ES,0). Hence, the kernel a can be

extended to a continuous linear functional on the space C [In, 01. According

to a well known result [2), this implies that a(s)ds - du(s), where P is a

finite regular countably additive measure on [*, 01. Because of condition

2 a' (the generalized derivative of a) has the same property. This

implies that a is a function of bounded variation. It is easy to conclude

from 1 that a is positive. Moreover, we have -a'(s)da - dii(s) for a

certain regular countably additive measure P. The characteristic function

X, of any open interval I C (a,0) can be approximated by a sequence of

positive test functions. Property 2* and Lebesgue's theorem guarantee that

;(I) is positive. Hence ; is a positive measure, which implies that a

is monotone decreasing. (We have a(t) - a(t') - -;(t,t') for almost every

t,t').

-4-



Let us now consider test functions V supported on [O,01. Let e z

be such that *(s) s for s e [O,a] and 0 O. Then

max PIP(t)l • • max Iv(tI.
te[o,a teo, a]

a a
Therefore, we have f a(s)p(s)ds f b(s)v'(s)ds, and b(s)ds - dy(s) for a

0 0
finite, regular, countably additive measure v. Since we already know how the

kernel a acts on functions supported away from 0, we need only be

concerned with the possibility that v has an atom at 0. We thus obtain

(2.1) 7 a(s)p(s)ds - C '(O) + J 8(s)V(s) s for s e z.
0 0

where A is a positive, monotone decreasing function defined on (0,a).

Condition 1 implies that C 0 0, and for the integral to be defined on E

it is necessary and sufficient that 1(s)"s is locally integrable. (Since

V e C, ;P(0) = 0, we have in general P(s) - s as s + 0). From here the

theorem is immediate.

Remark:

When speaking of "domain spaces", we have regarded (1.1) as a functional,

i.e. as a mapping of histories of to present values of T. A different

sometimes useful view of convolution integrals such as (1.1) is that of an

operator, i.e. a mapping of histories of T to histories of T. With this

interpretation, the domain space for the relation (2.1) will be different

from P (of course, it depends on the space that the history of T is

required to be in).
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Remark on the formulation of constitutive equations:

I have shown that, if Boltzmann's theory is reformulated in a

distributional setting, then the Newtonian fluid appears as a special case.

Constitutive models that combine memory integrals and Newtonian contributions

(or nonlinear modifications thereof) are therefore natural. Such models are

usually used for polymer solutions with Newtonian solvents and have also been

suggested for polymer melts. On the other hand, fluids of higher grade, when

taken as *exact* models rather than singular perturbation expansions, are

incompatible with Boltzmann's postulates.

-6-



3. Nonexistence of *materials of the differential type" [5]

As we have seen, fluids of grade higher than 1 are not consistent with

Boltzmann'e conditions. In this chapter I show that, in addition, fluids of

grade higher than 4 can riot be stable at rest if the domain is sufficiently

large. I conclude that such materials can not exist. For orders two, three,

and four, stability of the rest state is possible only if the first normal

stress difference has a sign incompatible with experimental values. These

results extend those of Joseph [3] who showed that a fluid of grade n can be

stable only if the coefficients of A. and A.1 have the same sign.

As shown in [3], the stability problem for an nth grade fluid at rest

leads to the characteristic equation.

(3.1) I - k( 0)

-A(% + l + ... + a. I

where A are the eigenvalues of the Stokes operator for the domain occupied

by the fluid and k(O) is a polynomial of degree n - 1. The A can take
m

any positive value if the domain is chosen appropriately.

Consider the limit A + 0 (which occurs if the domain grows large).
m

Then one root of (3.1) tends to zero and is, in a first approximations, given

by a - m0 A . The other n - 2 roots tend to * and their first
Is

approximation is a - A a - -  or i2  - • If n is greater than
mn-i-

four, at least one of the roots to this last equation will have positive real

part. (This argument remains valid even if an integral term as considered by

Saut and Joseph [4] is added to the constitutive law. Such a term is only a

lowe" .-der perturbation). If n is three or four, we conclude from the

*preceding argument that stability is only possible if a and an.1  are

-7-



negative. According to [3], an- 2  must then also be negative. This proves

my claim for n - 3. For n - 4, let us consider the limit A +. In thism

case the roots are approximated by those of the equation

(3.2) k(C)=0 +al a+ 2  -0.

We already know that '0' '2 ' '3 are negative. There is at least one

negative root -0 e4 whence

k() = (0 + 0 )(8 1 + 20+ 802)(3.3)0 1 2 3
- BO O + (01 + 200)0 + (82 + 3a 0)2 + 0303 .

We can conclude that 8 and 3 must be negative. It is then, however,
1 3

easy to see that the quadratic polynomial has a root of positive real part

unless 8 is also negative. As a consequence, ,= + 8 a is negative.
2 1 20

It must be noted that, for n > 4, we not only find eigenvalues of

positive real part, but for A -+ 0 the real part tends to infinity. Inm

infinite domains, the initial value problem for such fluids is therefore ill-

posed, i.e. solutions generally do not exist even for smooth initial data.

Rivlin-Ericksen fluids of grade higher than 4 therefore are not only

inadmissible as "exact" models, but also as approximate models for unsteady

flows, they are an unstable approximation.

"* The phenomenon that an approximation to the equation does not always

yield an approximation to the solution is well known in numerical analysis,

however, it is by no means limited to numerical methods. Any kind of

approximation must be assessed for its stability. It is my conclusion that

there are two poss' le lines for further research%

-8-



1. Abandon the idea of retarded motion expansions [6] and seek

different and hopefully stable approximation schemes.

2. Rivlin-Ericksen type approximations might be "saved" if additional

approximations are introduced. This situation is quite common in

numerical analysis. Many discretization methods require that

spatial and temporal mesh sizes satisfy certain inequalities. This

means in particular that the two approximations must not be made

independently.

/
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